Roof and Attic Ventilation Issues in Hot-Humid Climates

Research Report - 0302
14-May-2003
Armin Rudd

Abstract:

A presentation examining the requirement for roof/attic venting in hot-humid climates.
Roof and Attic Ventilation Issues in Hot-Humid Climates

presented by:
Armin Rudd
Building Science Corporation

for
South Florida Building Officials Association
14 May 2003
Early History of Attic Ventilation

Presentation material with permission from:
William B. Rose, Research Architect
Building Research Council-School of Architecture University of Illinois at Urbana-Champaign

Previously presented at:
12th International Roofing and Waterproofing Conference
25-27 September 2002 in Orlando FL
Proceedings available through NRCA
Roof condensation is reported far more frequently than sidewall condensation, not necessarily because it occurs more frequently but rather because it is more likely to be seen by the occupants. For example, in a pitched roof house having, say, fill insulation in the ceiling below the attic, condensation may develop during a severe cold spell on the underside of the roof boards, forming as ice or frost. When the weather moderates, or even under a bright sun, the ice melts and drips on the attic floor, leaks through and spots the ceiling below. ... If the attic has adequate ventilation little or no trouble will occur but adequate ventilation is sometimes difficult to attain, and tends to increase the heat loss.
L.V. Teesdale, 1937 (continued)

- Overall recommendation was to reduce indoor humidity, and

 “For new construction it is recommended that a suitable vapor barrier be installed on the side wall studs and below the ceiling insulation and that some attic ventilation also be provided.”
“Architects, owners and research technicians have observed, in recent years, a small but growing number of buildings in which dampness or frost has developed in walls, roofs or attic spaces. Most of these were insulated houses, a few were winter air-conditioned. The erroneous impression has spread that insulation ‘draws’ water into the walls and roofs...Obviously, insulation is not at fault.”
Figure 2: VAPOR PRESSURES IN WALLS. The weight of water vapor in air exerts pressure which tends to move vapor from air that has more water content to air that has less. This vapor pressure is measured in millimeters of mercury (Hg). Approximate changes in vapor pressure between the warm, humidified air usually present in occupied buildings in winter and the pressure out of doors on a typical winter day are shown above. The pressure gradient lines show also the relative rate of vapor movement. Note that a vapor barrier (at right) stops most vapor movement and reduces the pressure nearly to that of the cold outside air. Compare with the temperature gradient lines of Figure 3. (Drawings based on data from Kimberly-Clark Corporation).
“Venting of roof areas above insulation may be accomplished by various means, according to the construction involved. Unoccupied attics or loft spaces, above insulation installed at the ceiling below, should be vented by louvers in gable ends or side walls at the highest possible point, or by ridge ventilators or false chimneys. Wood shingle roofs applied on spaced shingle lath without vapor resistant papers provide sufficiently free vapor movement to make additional venting unnecessary, but roof decks of any kind which are covered with vapor-resistive materials should have special vents."

- 1939. Rogers became Director of Technical Publications for Owens Corning Fiberglas.

Presentation material with permission from:
William B. Rose, Research Architect, Building Research Council-School of Architecture University of Illinois at Urbana-Champaign
Rowley 1938

Presentation material with permission from:
William B. Rose, Research Architect, Building Research Council-School of Architecture University of Illinois at Urbana-Champaign

RR-0302: Roof and Attic Ventilation Issues in Hot-Humid Climates

Building Science Corporation
Rowley’s Conclusions 1938

4. It is possible to reduce the rate of condensation within a structure by ventilating to the outside. This method may be particularly effective in attics where the condensation occurs on the underside of the roof. Adequate ventilation may be obtained without serious loss of heat.

9. For cold attic spaces it is desirable to allow openings for outside air circulation through attic space as a precaution against condensation on the underside of the roof even though barriers are used in the ceiling below.

Presentation material with permission from:
William B. Rose, Research Architect, Building Research Council-School of Architecture University of Illinois at Urbana-Champaign
FHA 1942

- First guidelines for “basementless space” ventilation (1/150), “loft or attic space” ventilation (1/300) and vapor barriers (1.25 grains per ft²-hr-inHg) appeared. Mimeographed copy with no references or citations.

Presentation material with permission from:
William B. Rose, Research Architect, Building Research Council-School of Architecture University of Illinois at Urbana-Champaign

Building Science Corporation
FHA 1942

• 209 LIGHT AND VENTILATION
 – K Attics (Includes air space between ceiling and flat roofs).
 • Provide effective fixed ventilation in all spaces between roofs and top floor ceilings, by screened louvres or by other means acceptable to the Chief Architect.
 • Net ventilation area for each separate space to be not less than 1/300 of horizontally projected roof area. Where possible, locate vents to provide effective cross-ventilation.
 • Use corrosion-resistant screening over openings, mesh not less than 12 per inch.
Britton “Crawl Spaces” 1947

“Note: Where an effective vapor barrier is assured in the top-story ceiling, loft or attic space ventilation specified above may be greatly decreased. Such decrease may well be as much as 90% where controlled construction is assured and walls or crawl space do not contribute to moisture supply in the attic or loft space.”

Presentation material with permission from: William B. Rose, Research Architect, Building Research Council-School of Architecture University of Illinois at Urbana-Champaign
HHFA 1948

- Ralph Britton was the principal author of “Condensation Control”, a booklet with guidance for the post-WWII housing boom. Recommended attic ventilation and vapor barriers.

Presentation material with permission from:
William B. Rose, Research Architect, Building Research Council-School of Architecture University of Illinois at Urbana-Champaign
SEC. 115.3 ATTIC SPACES All attic spaces and unoccupied spaces between roofs and top floor ceilings shall be ventilated by not less than two (2) opposite louvres or vents with a total clear area of opening not less than one-third (1/3) of one (1) per cent of the horizontally projected roof area.

SEC. 115.4 CRAWL SPACES Access spaces under grade floor construction and wherever wood, gypsum, metal or other floor construction subject to corrosion or deterioration is installed above the
Presentation material with permission from:
William B. Rose, Research Architect, Building Research Council-School of Architecture University of Illinois at Urbana-Champaign
National Paint and Varnish Association
1952

Presentation material with permission from:
William B. Rose, Research Architect, Building Research Council-School of Architecture University of Illinois at Urbana-Champaign
“…with new materials and techniques and designs we have new things to blame for the faults in our buildings. It is never in fashion to blame ourselves, of course; it is always some other Joe who caused the trouble. So paint failures were at first blamed on insulation and condensation; and condensation was itself blamed on insulation, until the insulation industry, in self defense, had to undertake research to establish its innocence...
Condensation Conference: Rogers

...While this research and similar work by the paint industry was going on, there was a great deal of buck-passing. The insulation men blamed the paints or the wet lumber and some painters retaliated by refusing to paint an insulated house. Then the building paper manufacturers got caught in the middle; their new sheathing papers were blamed for causing condensation instead of shielding a building from dampness. The foils were soon in the ring with the papers, while architects, builders, building owners and the general public watched this battle royal and wondered if any of the fighters was worth betting on.”

Presentation material with permission from:
William B. Rose, Research Architect, Building Research Council-School of Architecture University of Illinois at Urbana-Champaign
“Another point brought up by Mr. Teesdale is this question of attic ventilation. I think most people have had some experience with attic ventilation in trying to get good distribution of air around the attic. ... Too much ventilation may even cause damage by cooling off the top of the insulation. We have taken cases where excess ventilation will cool the top surface of the insulating material...So too much ventilation may be dangerous just as well as too little.”
In Conclusion of the Historical Perspective

• Attic venting issues all started surrounding problems with cold climate roof condensation and siding paint failure after houses began to be insulated

– Before insulation, the houses were leaky but the attics were warm due to heat loss from the living space.

– After insulation, the houses were still leaky but the attics were colder.

– Roof condensation was due to moisture that was carried by air leakage from the living space, or wet crawl spaces and basements to the underside of the cold roof deck.
This was a problem that Miami-Dade County does not have.

• So why was roof/attic venting universally required in hot-humid climates?
This was a problem that Miami-Dade County does not have.

• So why was roof/attic venting universally required in hot-humid climates?
 – Outdoor temperatures do not go low enough in the winter in South Florida to cause a roof condensation problem
This was a problem that Miami-Dade County does not have.

- So why was roof/attic venting universally required in hot-humid climates?
 - Outdoor temperatures do not go low enough in the winter in South Florida to cause a roof condensation problem
 - And, the greatest moisture source is always from the outside, not the inside.

 - For cooled buildings in Miami-Dade County, the drying potential is always to the inside due to moisture removal by the cooling coil
This was a problem that Miami-Dade County does not have.

• So why was roof/attic venting universally required in hot-humid climates?
 – Outdoor temperatures do not go low enough in the winter in South Florida to cause a roof condensation problem
 – And, the greatest moisture source is always from the outside, not the inside.
 – And, it must not be primarily for energy conservation since the IRC 2000 Chapter 11 on Energy Conservation is silent on attic venting
Air Distribution System in Attic

Leaky air handling unit and supply ducts

Air handling unit

Supply
Return
Supply

Depressurized conditioned space inducing infiltration

Note: Colored shading depicts the building’s thermal barrier and pressure boundary. The thermal barrier and pressure boundary enclose the conditioned space.
Summary of Annual Simulation Results for Orlando, Florida

<table>
<thead>
<tr>
<th>Simulation Description</th>
<th>Cooling Consumption</th>
<th>Heating Consumption</th>
<th>Total Consumption</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:300 vented attic, R19 ceiling insulation, R5 duct insulation, R11 walls, single glazing, black roof shingles</td>
<td>1.1%</td>
<td>8.7%</td>
<td>2.2%</td>
<td>4.1%</td>
</tr>
<tr>
<td>Unvented cathedralized attic</td>
<td>1.1%</td>
<td>8.7%</td>
<td>2.2%</td>
<td>4.1%</td>
</tr>
<tr>
<td>White tile 10.2%</td>
<td>1.1%</td>
<td>8.7%</td>
<td>2.2%</td>
<td>4.1%</td>
</tr>
<tr>
<td>1:150 attic vent area</td>
<td>1.1%</td>
<td>8.7%</td>
<td>2.2%</td>
<td>4.1%</td>
</tr>
<tr>
<td>Duct leakage: 10% return 5% supply</td>
<td>14.4%</td>
<td>18.4%</td>
<td>22.8%</td>
<td>32.0%</td>
</tr>
<tr>
<td>Duct leakage: 15% return 10% supply</td>
<td>22.8%</td>
<td>32.0%</td>
<td>25.9%</td>
<td>24.4%</td>
</tr>
</tbody>
</table>

Consumption based on 10 SEER cooling and electric heat

Cost based on 10 SEER cooling at \$0.08/kW h and gas heat (combo water heating system 60% efficiency) at \$0.02/kW h
Benefits of Unvented Attic with Spray Foam Insulation

- Building air tightening
 - Greatly reduces air infiltration which causes comfort problems and high space conditioning energy bills
 - It is hard to build the ceiling air tight due to changing ceiling heights, soffits, coffered ceilings, dropped ceilings, and mechanical chases
Benefits of Unvented Attic with Spray Foam Insulation

- Building air tightening
 - Greatly reduces air infiltration which causes comfort problems and high space conditioning energy bills
 - It is hard to build the ceiling air tight due to changing ceiling heights, soffits, coffered ceilings, dropped ceilings, and mechanical chases

- Eliminates moisture carried in by outside air
 - Eliminate condensation on cool duct and ceiling drywall surfaces (attic dewpoint temperature can be up to 85 F)
 - Eliminate moist air pulled down interstitial wall cavities by mechanical depressurization, often resulting in mold on drywall
Benefits of Unvented Attic with Spray Foam Insulation

- Building air tightening
 - Greatly reduces air infiltration which causes comfort problems and high space conditioning energy bills
 - It is hard to build the ceiling air tight due to changing ceiling heights, soffits, coffered ceilings, dropped ceilings, and mechanical chases
- Eliminates moisture carried in by outside air
 - Eliminate condensation on cool duct and ceiling drywall surfaces (attic dewpoint temperature can be up to 85 F)
 - Eliminate moist air pulled down interstitial wall cavities by mechanical depressurization, often resulting in mold on drywall
- Improved indoor air quality
 - Less dust, dirt, and pollen gets into the house
 - Less hospitable environment for bugs and insects who like the moisture
Benefits of Unvented Attic with Spray Foam Insulation (continued)

- Energy efficiency
 - Complete air distribution system inside conditioned space
 - Less uncontrolled air exchange
Benefits of Unvented Attic with Spray Foam Insulation (continued)

- Energy efficiency
 - Complete air distribution system inside conditioned space
 - Less uncontrolled air exchange

- Increased structural resistance
 - Less pressure buffeting in high winds
Benefits of Unvented Attic with Spray Foam Insulation (continued)

- Energy efficiency
 - Complete air distribution system inside conditioned space
 - Less uncontrolled air exchange

- Increased structural resistance
 - Less pressure buffeting in high winds

- Increased fire resistance
 - Less air supply due to stack effect
Attics and Cathedral Ceilings

The commonly stated rules for attic and cathedral ceiling construction—ventilation and vapor retarder toward the inside—pertain to cold climates and not to warm, humid climates with indoor air conditioning. Common sense suggests that venting with relatively humid outdoor air means higher levels of moisture in the attic or cathedral ceiling. Higher moisture levels in vented attics in hot, humid climates do not lead to moisture damage in sheathing or framing. However, higher moisture levels in attic cavities may affect chilled surfaces of the ceiling and cold surfaces of mechanical equipment. When cooling ducts are located in the attic space, attic ventilation with humid outdoor air may increase the chance of condensation on the ducts.

As in all climates, airtight construction is desirable. In warm, humid climates, airtight construction usually reduces the latent load. Insulation and interior finishes should be selected and installed with an understanding that vapor diffusion is primarily inward.
Icynene samples were removed to inspect roof sheathing of 6-month old house in North Florida. Sheathing was in perfect condition and moisture content was normal.
Icynene samples were removed to inspect roof sheathing of 6-month old house in North Florida. Sheathing was in perfect condition and moisture content was normal.
Icynene samples were removed to inspect roof sheathing of a 3-year old house in North Florida. Sheathing was in perfect condition and moisture content was normal.
Ventilation and shingle warranties?

- With information provided so far, first manufacturer warranties requiring code-level ventilation appeared in mid 1980s.

- 1984 version of 1974 “Principles of Attic Ventilation” (AirVent, Inc.): “Also, the remodeling industry is increasingly aware of the importance of proper ventilation to assure roof shingle durability and performance.”

- ARMA Asphalt Roofing Manual 1988: “Proper ventilation of the attic areas is a little understood but very helpful method of not only controlling heating and cooling costs, but also getting maximum service life out of the building materials used in the roof assembly.”
Ventilation and shingle warranties? (continued)

• Asphalt roof shingle manufacturers didn’t start to adjust warranties until the 1980’s, and some have not.
Ventilation and shingle warranties? (continued)

- Asphalt roof shingle manufacturers didn’t start to adjust warranties until the 1980’s, and some have not.
 - Our consulting experience has been that when a large production homebuilder negotiates a price for roof shingles, shingle warranty is not adjusted regardless of roof ventilation.
• Asphalt roof shingle manufacturers didn’t start to adjust warranties until the 1980’s, and some have not.

 – Our consulting experience has been that when a large production homebuilder negotiates a price for roof shingles, shingle warranty is not adjusted regardless of roof ventilation.

 – Our simulations and measurements have shown that asphalt shingles applied over vented roofs in hot-dry climates operate warmer than the same asphalt shingles applied over unvented roofs in hot-humid climates.

 • To our knowledge, there have been no shingle warranty adjustments for Las Vegas versus Orlando, and that difference in location is more significant in regards to shingle temperature than vented versus unvented.
Ventilation and shingle warranties? (continued)

- Asphalt roof shingle manufacturers didn’t start to adjust warranties until the 1980’s, and some have not.
 - Our consulting experience has been that when a large production homebuilder negotiates a price for roof shingles, shingle warranty is not adjusted regardless of roof ventilation.
 - Our simulations and measurements have shown that asphalt shingles applied over vented roofs in hot-dry climates operate warmer than the same asphalt shingles applied over unvented roofs in hot-humid climates.
 - To our knowledge, there have been no shingle warranty adjustments for Las Vegas versus Orlando, and that difference in location is more significant in regards to shingle temperature than vented versus unvented.
 - The difference in color choice from white to black is more significant in regards to shingle temperature than vented versus unvented.
<table>
<thead>
<tr>
<th>HOUR</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>65.2</td>
<td>66.1</td>
<td>68.1</td>
<td>73.6</td>
<td>75.6</td>
<td>78.4</td>
<td>79.5</td>
<td>80.0</td>
<td>77.7</td>
<td>74.4</td>
<td>71.2</td>
<td>65.8</td>
<td>73.0</td>
</tr>
<tr>
<td>1</td>
<td>64.7</td>
<td>66.0</td>
<td>67.5</td>
<td>72.5</td>
<td>75.3</td>
<td>79.1</td>
<td>79.4</td>
<td>77.4</td>
<td>74.0</td>
<td>70.7</td>
<td>65.5</td>
<td>72.5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>63.9</td>
<td>65.7</td>
<td>67.2</td>
<td>72.0</td>
<td>74.8</td>
<td>77.6</td>
<td>78.9</td>
<td>79.3</td>
<td>77.0</td>
<td>73.6</td>
<td>70.3</td>
<td>65.1</td>
<td>72.1</td>
</tr>
<tr>
<td>3</td>
<td>63.5</td>
<td>65.6</td>
<td>67.0</td>
<td>71.4</td>
<td>74.3</td>
<td>77.2</td>
<td>78.8</td>
<td>78.8</td>
<td>76.6</td>
<td>73.3</td>
<td>70.0</td>
<td>64.7</td>
<td>71.8</td>
</tr>
<tr>
<td>4</td>
<td>63.1</td>
<td>65.2</td>
<td>66.6</td>
<td>70.8</td>
<td>73.8</td>
<td>76.9</td>
<td>78.4</td>
<td>78.6</td>
<td>76.4</td>
<td>73.2</td>
<td>69.5</td>
<td>64.2</td>
<td>71.4</td>
</tr>
<tr>
<td>5</td>
<td>62.6</td>
<td>64.7</td>
<td>66.2</td>
<td>70.5</td>
<td>73.6</td>
<td>76.3</td>
<td>78.4</td>
<td>78.4</td>
<td>76.4</td>
<td>72.9</td>
<td>69.4</td>
<td>63.8</td>
<td>71.2</td>
</tr>
<tr>
<td>6</td>
<td>62.4</td>
<td>64.6</td>
<td>66.2</td>
<td>71.1</td>
<td>74.8</td>
<td>77.1</td>
<td>79.8</td>
<td>78.7</td>
<td>77.0</td>
<td>72.8</td>
<td>69.5</td>
<td>63.2</td>
<td>71.5</td>
</tr>
<tr>
<td>7</td>
<td>62.7</td>
<td>65.6</td>
<td>68.0</td>
<td>73.7</td>
<td>77.1</td>
<td>79.9</td>
<td>82.4</td>
<td>80.8</td>
<td>80.1</td>
<td>75.0</td>
<td>70.6</td>
<td>66.0</td>
<td>73.5</td>
</tr>
<tr>
<td>8</td>
<td>65.9</td>
<td>68.9</td>
<td>70.3</td>
<td>76.3</td>
<td>79.1</td>
<td>82.3</td>
<td>84.1</td>
<td>82.7</td>
<td>82.5</td>
<td>77.3</td>
<td>73.4</td>
<td>68.7</td>
<td>76.0</td>
</tr>
<tr>
<td>9</td>
<td>68.8</td>
<td>71.2</td>
<td>72.1</td>
<td>78.4</td>
<td>80.9</td>
<td>83.8</td>
<td>85.3</td>
<td>84.0</td>
<td>83.9</td>
<td>79.6</td>
<td>76.2</td>
<td>71.5</td>
<td>78.0</td>
</tr>
<tr>
<td>10</td>
<td>71.1</td>
<td>72.9</td>
<td>73.4</td>
<td>80.0</td>
<td>82.4</td>
<td>85.2</td>
<td>86.2</td>
<td>85.3</td>
<td>85.0</td>
<td>80.4</td>
<td>77.5</td>
<td>72.9</td>
<td>79.4</td>
</tr>
<tr>
<td>11</td>
<td>72.8</td>
<td>74.1</td>
<td>74.0</td>
<td>80.9</td>
<td>82.6</td>
<td>85.6</td>
<td>86.2</td>
<td>85.6</td>
<td>85.5</td>
<td>81.2</td>
<td>78.7</td>
<td>74.0</td>
<td>80.1</td>
</tr>
<tr>
<td>12</td>
<td>73.8</td>
<td>74.6</td>
<td>74.8</td>
<td>81.3</td>
<td>83.3</td>
<td>85.1</td>
<td>86.4</td>
<td>85.9</td>
<td>85.3</td>
<td>81.9</td>
<td>78.9</td>
<td>75.5</td>
<td>80.6</td>
</tr>
<tr>
<td>13</td>
<td>74.3</td>
<td>75.1</td>
<td>75.6</td>
<td>81.3</td>
<td>83.9</td>
<td>85.1</td>
<td>86.6</td>
<td>86.1</td>
<td>84.8</td>
<td>81.7</td>
<td>79.1</td>
<td>75.2</td>
<td>80.8</td>
</tr>
<tr>
<td>14</td>
<td>74.3</td>
<td>74.7</td>
<td>75.9</td>
<td>80.9</td>
<td>83.3</td>
<td>85.3</td>
<td>85.6</td>
<td>85.9</td>
<td>83.4</td>
<td>81.4</td>
<td>78.9</td>
<td>74.8</td>
<td>80.4</td>
</tr>
<tr>
<td>15</td>
<td>73.8</td>
<td>74.5</td>
<td>76.0</td>
<td>80.5</td>
<td>82.1</td>
<td>84.4</td>
<td>84.9</td>
<td>84.9</td>
<td>83.8</td>
<td>81.1</td>
<td>78.2</td>
<td>74.6</td>
<td>79.9</td>
</tr>
<tr>
<td>16</td>
<td>72.6</td>
<td>73.3</td>
<td>75.2</td>
<td>80.0</td>
<td>80.9</td>
<td>84.0</td>
<td>85.2</td>
<td>84.6</td>
<td>82.6</td>
<td>80.0</td>
<td>77.2</td>
<td>73.0</td>
<td>79.1</td>
</tr>
<tr>
<td>17</td>
<td>71.0</td>
<td>72.2</td>
<td>73.6</td>
<td>78.5</td>
<td>80.2</td>
<td>83.2</td>
<td>83.7</td>
<td>84.1</td>
<td>81.7</td>
<td>79.1</td>
<td>75.9</td>
<td>71.6</td>
<td>77.9</td>
</tr>
<tr>
<td>18</td>
<td>69.6</td>
<td>70.7</td>
<td>72.3</td>
<td>77.3</td>
<td>79.0</td>
<td>82.2</td>
<td>82.4</td>
<td>82.8</td>
<td>80.5</td>
<td>78.0</td>
<td>74.6</td>
<td>70.0</td>
<td>76.6</td>
</tr>
<tr>
<td>19</td>
<td>68.7</td>
<td>69.6</td>
<td>71.3</td>
<td>76.2</td>
<td>77.8</td>
<td>81.1</td>
<td>81.5</td>
<td>82.0</td>
<td>79.8</td>
<td>77.3</td>
<td>73.6</td>
<td>69.3</td>
<td>75.7</td>
</tr>
<tr>
<td>20</td>
<td>67.8</td>
<td>68.4</td>
<td>70.9</td>
<td>75.5</td>
<td>77.4</td>
<td>80.4</td>
<td>81.2</td>
<td>81.9</td>
<td>79.1</td>
<td>76.5</td>
<td>73.0</td>
<td>68.5</td>
<td>75.1</td>
</tr>
<tr>
<td>21</td>
<td>66.8</td>
<td>67.7</td>
<td>70.0</td>
<td>75.0</td>
<td>76.8</td>
<td>79.8</td>
<td>80.8</td>
<td>81.5</td>
<td>78.3</td>
<td>75.7</td>
<td>72.2</td>
<td>67.7</td>
<td>74.4</td>
</tr>
<tr>
<td>22</td>
<td>66.2</td>
<td>67.4</td>
<td>69.4</td>
<td>74.4</td>
<td>76.7</td>
<td>79.3</td>
<td>80.2</td>
<td>80.9</td>
<td>77.7</td>
<td>75.3</td>
<td>71.5</td>
<td>67.1</td>
<td>73.9</td>
</tr>
<tr>
<td>23</td>
<td>65.7</td>
<td>66.9</td>
<td>68.8</td>
<td>73.8</td>
<td>76.2</td>
<td>79.0</td>
<td>80.0</td>
<td>80.5</td>
<td>77.8</td>
<td>74.8</td>
<td>71.2</td>
<td>66.6</td>
<td>73.5</td>
</tr>
</tbody>
</table>
About this Report
This report first presented to the South Florida Building Officials Association on May 14, 2003.

About the Author
Armin Rudd is a principal engineer at Building Science Corporation in Westford, Massachusetts. More information about Armin Rudd can be found at www.buildingscienceconsulting.com.

Direct all correspondence to: Building Science Corporation, 30 Forest Street, Somerville, MA 02143.

Limits of Liability and Disclaimer of Warranty:

Building Science documents are intended for professionals. The author and the publisher of this article have used their best efforts to provide accurate and authoritative information in regard to the subject matter covered. The author and publisher make no warranty of any kind, expressed or implied, with regard to the information contained in this article.

The information presented in this article must be used with care by professionals who understand the implications of what they are doing. If professional advice or other expert assistance is required, the services of a competent professional shall be sought. The author and publisher shall not be liable in the event of incidental or consequential damages in connection with, or arising from, the use of the information contained within this Building Science document.